If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6x^2-2x+2)-(5x^2+2x-2)=1
We move all terms to the left:
(6x^2-2x+2)-(5x^2+2x-2)-(1)=0
We get rid of parentheses
6x^2-5x^2-2x-2x+2+2-1=0
We add all the numbers together, and all the variables
x^2-4x+3=0
a = 1; b = -4; c = +3;
Δ = b2-4ac
Δ = -42-4·1·3
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2}{2*1}=\frac{2}{2} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2}{2*1}=\frac{6}{2} =3 $
| 3b−7=2b | | 10+10r=9r | | v/6+7=11 | | 1.4=m3− 1.7 | | (7x^2-8x+10)-(2x^2+x+10)=1 | | 9=12−3w | | y+(4(6)+5)+(8y-55)=180 | | 5x-1=6x-2 | | 4k−10=3k | | 3x+20+4x-36=180 | | 13j−9j=8 | | X^2+5x=1000 | | (7x^2-5x-+11)-(3x^2+2x-11)=1 | | 1=d4− 3 | | –10+6q=4q | | 5(2c-3)=20 | | 14−2f=6 | | 2y+68+180-4y+8=180 | | (6x^2-4x+1)-(2x^2+6x-1)=1 | | –8f=–3−9f | | 3(x+28)+4(x+35)=14 | | 8=3f+5 | | 120+5x=60-5x | | 2(3x+4)=10x-2 | | 3(x+28)+4(x+34)=14 | | (2x^2-2x+3)-(x^2+5x-5)=1 | | 50-5y=1y-4 | | 0.2x2−5=0 | | 6=2w−2 | | 18+15y=-90 | | 2-2w=6 | | 2x2+0x−18=0 |